was read the article
array:24 [ "pii" => "S2254887424000912" "issn" => "22548874" "doi" => "10.1016/j.rceng.2024.07.001" "estado" => "S300" "fechaPublicacion" => "2024-10-01" "aid" => "2222" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "copyrightAnyo" => "2024" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Clin Esp. 2024;224:503-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S001425652400119X" "issn" => "00142565" "doi" => "10.1016/j.rce.2024.06.007" "estado" => "S300" "fechaPublicacion" => "2024-10-01" "aid" => "2222" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Clin Esp. 2024;224:503-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Predicción eficaz de la diabetes <span class="elsevierStyleItalic">de novo</span> con velocidad estimada de onda de pulso (ePWV) e índice de masa corporal (IMC)" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "503" "paginaFinal" => "509" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "The predictive value of estimated pulse wave velocity (ePWV) combined with BMI for newly diagnosed diabetes" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1053 "Ancho" => 1601 "Tamanyo" => 110589 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Curva ROC de diabetes pronosticada por IMC, ePWV e índice combinado. La curva de eficacia diagnóstica del IMC combinado con la ePWV fue 0,822, mayor que el IMC o la ePWV en solitario.</p> <p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">ABC: área bajo la curva ROC; ePWV: velocidad estimada de la onda de pulso; IMC: índice de masa corporal; ROC: eficacia diagnóstica.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "D. Dong, X. Qiao, C. Chen, W. Bao, X. Yuan, Y. Zhang" "autores" => array:7 [ 0 => array:2 [ "nombre" => "D." "apellidos" => "Dong" ] 1 => array:2 [ "nombre" => "X." "apellidos" => "Qiao" ] 2 => array:2 [ "nombre" => "C." "apellidos" => "Chen" ] 3 => array:2 [ "nombre" => "W." "apellidos" => "Bao" ] 4 => array:2 [ "nombre" => "C." "apellidos" => "Chen" ] 5 => array:2 [ "nombre" => "X." "apellidos" => "Yuan" ] 6 => array:2 [ "nombre" => "Y." "apellidos" => "Zhang" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2254887424000912" "doi" => "10.1016/j.rceng.2024.07.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887424000912?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S001425652400119X?idApp=WRCEE" "url" => "/00142565/0000022400000008/v1_202410020530/S001425652400119X/v1_202410020530/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2254887424000924" "issn" => "22548874" "doi" => "10.1016/j.rceng.2024.07.002" "estado" => "S300" "fechaPublicacion" => "2024-10-01" "aid" => "2223" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Clin Esp. 2024;224:510-21" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Association between serum neurofilament light chains (sNfL) and neurologic disorders in a representative sample of US adults: a cross-sectional study" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "510" "paginaFinal" => "521" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Asociación entre las cadenas ligeras de neurofilamento en suero (sNfL) y los trastornos neurológicos en una muestra representativa de adultos en los Estados Unidos: un estudio transversal" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Qi Xu, Jiale Wang, Hanzhi Li, Yuwan Gao" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Qi" "apellidos" => "Xu" ] 1 => array:2 [ "nombre" => "Jiale" "apellidos" => "Wang" ] 2 => array:2 [ "nombre" => "Hanzhi" "apellidos" => "Li" ] 3 => array:2 [ "nombre" => "Yuwan" "apellidos" => "Gao" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0014256524001206" "doi" => "10.1016/j.rce.2024.06.008" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0014256524001206?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887424000924?idApp=WRCEE" "url" => "/22548874/0000022400000008/v1_202410020653/S2254887424000924/v1_202410020653/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2254887424001000" "issn" => "22548874" "doi" => "10.1016/j.rceng.2024.07.006" "estado" => "S300" "fechaPublicacion" => "2024-10-01" "aid" => "2221" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Clin Esp. 2024;224:494-502" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Cardiac amyloidosis worsens prognosis in patients with heart failure: findings from the PREVAMIC study" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "494" "paginaFinal" => "502" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La amiloidosis cardiaca empeora el pronóstico en los pacientes con insuficiencia cardiaca: hallazgos del estudio PREVAMIC" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 993 "Ancho" => 1675 "Tamanyo" => 80279 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Survival at one year of follow-up in patients with cardiac amyloidosis (red line) and without cardiac amyloidosis (blue line).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "R. Ruiz Hueso, P. Salamanca Bautista, M.A. Quesada Simón, S. Yun, A. Conde Martel, J.L. Morales Rull, I. Fiteni Mera, D. Abad Pérez, I. Páez Rubio, Ó. Aramburu Bodas" "autores" => array:11 [ 0 => array:2 [ "nombre" => "R." "apellidos" => "Ruiz Hueso" ] 1 => array:2 [ "nombre" => "P." "apellidos" => "Salamanca Bautista" ] 2 => array:2 [ "nombre" => "M.A." "apellidos" => "Quesada Simón" ] 3 => array:2 [ "nombre" => "S." "apellidos" => "Yun" ] 4 => array:2 [ "nombre" => "A." "apellidos" => "Conde Martel" ] 5 => array:2 [ "nombre" => "J.L." "apellidos" => "Morales Rull" ] 6 => array:2 [ "nombre" => "I." "apellidos" => "Fiteni Mera" ] 7 => array:2 [ "nombre" => "D." "apellidos" => "Abad Pérez" ] 8 => array:2 [ "nombre" => "I." "apellidos" => "Páez Rubio" ] 9 => array:2 [ "nombre" => "Ó." "apellidos" => "Aramburu Bodas" ] 10 => array:1 [ "colaborador" => "grupo de trabajo PREVAMIC" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0014256524001188" "doi" => "10.1016/j.rce.2024.06.006" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0014256524001188?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887424001000?idApp=WRCEE" "url" => "/22548874/0000022400000008/v1_202410020653/S2254887424001000/v1_202410020653/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "The predictive value of estimated pulse wave velocity (ePWV) combined with BMI for newly diagnosed diabetes" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "503" "paginaFinal" => "509" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Da Bao Dong, Xiao Li Qiao, Cheng Wen Chen, Wei Bao, Chun Wei Chen, Xiang Yuan, Ying Zhang" "autores" => array:7 [ 0 => array:3 [ "nombre" => "Da Bao" "apellidos" => "Dong" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "Xiao Li" "apellidos" => "Qiao" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Cheng Wen" "apellidos" => "Chen" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "Wei" "apellidos" => "Bao" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 4 => array:3 [ "nombre" => "Chun Wei" "apellidos" => "Chen" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 5 => array:3 [ "nombre" => "Xiang" "apellidos" => "Yuan" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0025" ] ] ] 6 => array:3 [ "nombre" => "Ying" "apellidos" => "Zhang" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:5 [ 0 => array:3 [ "entidad" => "Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Department of Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China" "etiqueta" => "d" "identificador" => "aff0020" ] 4 => array:3 [ "entidad" => "Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China" "etiqueta" => "e" "identificador" => "aff0025" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Predicción eficaz de la diabetes <span class="elsevierStyleItalic">de novo</span> con velocidad estimada de onda de pulso (ePWV) e índice de masa corporal (IMC)" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1479 "Ancho" => 2091 "Tamanyo" => 159000 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">ROC curve of diabetes predicted by BMI, ePWV and combined index. The receiver operating characteristic curve of BMI combined with ePWV was 0.822, which was higher than BMI or ePWV alone.</p> <p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: ROC, receiver operating characteristic; AUC, area under the ROC curve; BMI, Body mass index; ePWV, estimated pulse wave velocity.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Background</span><p id="par0005" class="elsevierStylePara elsevierViewall">Diabetes is a metabolic disorder resulting from abnormal glucose metabolism and is one of the most prevalent chronic diseases globally.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> According to the latest epidemiological surveys, the prevalence rate is 6,059 cases per 100,000 people, with the global burden of diabetes steadily increasing. By 2030, the incidence of type 2 diabetes worldwide is projected to rise to 7,079 cases per 100,000 people.<a class="elsevierStyleCrossRefs" href="#bib0010"><span class="elsevierStyleSup">2,3</span></a> As diabetes progresses, it can cause long-term disability and significantly impact quality of life. The disease can lead to multi-organ damage, resulting in complications such as cardiovascular events, cerebrovascular diseases, kidney diseases, and eye diseases.<a class="elsevierStyleCrossRefs" href="#bib0020"><span class="elsevierStyleSup">4,5</span></a> Therefore, identifying high-risk populations for diabetes through simple and effective methods is of great significance given the substantial burden on patients.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Genetics, diet, unhealthy lifestyle, and environmental factors all contribute to the development of diabetes, with obesity being closely linked to the condition. Numerous studies have demonstrated that BMI, as an indicator of obesity, can effectively predict diabetes.<a class="elsevierStyleCrossRefs" href="#bib0030"><span class="elsevierStyleSup">6–8</span></a> Additionally, research indicates that increased arterial stiffness is strongly associated with high blood sugar, hyperinsulinemia, and abnormal glucose tolerance.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a> Estimated pulse wave velocity (ePWV), a novel indicator of arterial stiffness, offers advantages over traditional PWV by being simpler and less costly to measure. Previous studies have linked ePWV to cognitive impairment, stroke, cardiovascular events, and hypertension.<a class="elsevierStyleCrossRefs" href="#bib0050"><span class="elsevierStyleSup">10–14</span></a> However, its predictive value for diabetes remains underexplored. This study aims to evaluate the combined predictive value of ePWV and BMI for identifying new-onset diabetes in patients.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Study design and data source</span><p id="par0015" class="elsevierStylePara elsevierViewall">This study is a secondary analysis of a cohort study conducted by Rich Healthcare, detailed previously.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a> The Rich Healthcare cohort study recruited 685,277 adult participants from 11 cities in China who underwent health examinations between 2011 and 2016. The project aims to promote health among the Chinese population and evaluate diabetes and its risk factors through health checks and follow-ups. The datasets generated and analyzed during the current study are available in the Dryad repository (<a href="http://datadryad.org/withthedoi:10.5061/dryad.ft8750v">http://datadryad.org/withthedoi:10.5061/dryad.ft8750v</a>). According to the database's terms of service, researchers can freely use public data for subsequent analysis to maximize its utility. As the data anonymity and research ethics were approved in previous studies, this study does not require re-application. This study is a post-hoc analysis based on previous research. The exclusion criteria for study subjects are: (1) subjects diagnosed with diabetes at the baseline interview; (2) unclear diabetes status during follow-up; (3) less than 2 years of follow-up; (4) incomplete or extreme values for gender, BMI, FPG, and blood lipid parameters; (5) lack of height, weight, or blood pressure measurement information; and (6) subjects who did not participate for unknown reasons. Ultimately, 211,833 eligible subjects were analyzed.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Data collection</span><p id="par0020" class="elsevierStylePara elsevierViewall">All study subjects completed a standardized questionnaire that included demographic characteristics and physical examination results such as age, family history of diabetes, gender, blood pressure, height, weight, and smoking/drinking status. Weight and height were measured indoors with the subjects wearing lightweight clothing and no shoes. Blood pressure was measured using a standard mercury sphygmomanometer in a quiet environment. Fasting venous blood samples were collected by trained personnel and analyzed using an automated analyzer (Beckman 5800) in a standard laboratory. Plasma glucose levels were determined using the glucose oxidase method.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Definition and calculation</span><p id="par0025" class="elsevierStylePara elsevierViewall">The start of follow-up was initiated after the subject's initial clinical diabetes assessment, and the endpoint was marked by the occurrence of a new diabetes event. Follow-up primarily occurred annually at the examination center. Diagnosis of diabetes was based on either self-reported history or a measured fasting plasma glucose (FPG) level ≥7.00 mmol/L during follow-up.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> For those previously diagnosed with diabetes, researchers reviewed their blood glucose levels on the day of diagnosis or at the last visit.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Calculation of indicators</span><p id="par0030" class="elsevierStylePara elsevierViewall">The ePWV calculation mainly involves age and blood pressure, and the ePWV formula is: ePWV = 9.587 − 0.402 × age + 4.560 × 10 − 3 × age2 − 2.621 × 10 − 5 × age2 × MBP + 3.176 × 10 − 3 × age × MBP − 1.832 × 10 − 2 × MBP.<a class="elsevierStyleCrossRefs" href="#bib0085"><span class="elsevierStyleSup">17,18</span></a> The BMI is calculated as weight divided by height squared.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Statistical analysis</span><p id="par0035" class="elsevierStylePara elsevierViewall">Statistical analysis was carried out using R software version 4.2 and IBM SPSS Statistics version 23.0. Continuous variables were presented as mean ± standard deviation (SD), while categorical variables were presented as absolute values and percentages. T-test and one-way analysis of variance (ANOVA) were used for parametric comparisons, while Mann–Whitney U and Kruskal–Wallis tests were used for non-parametric comparisons. Chi-square test or Fisher's exact test were used to compare categorical variables as needed. Multivariable logistic models included significant variables at a P < 0.1 level in univariate analyses. Receiver operating characteristic (ROC) curves were used to calculate the sensitivity and specificity of ePWV, BMI, and ePWV combined with BMI levels. The variables for model selection included all potential confounding variables. All hypothesis tests were two-tailed, and a P-value of <0.05 was considered statistically significant.</p></span></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Results</span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Anthropometric and biochemical characteristics</span><p id="par0040" class="elsevierStylePara elsevierViewall">After excluding subjects who did not meet the criteria, a total of 211,833 eligible subjects were analyzed, including 116,123 men and 95,710 women, with a mean age of 42.10 ± 12.65 years, a mean ePWV of 7.47 ± 1.72 (m/s), and a mean BMI of 23.24 ± 3.34 (Kg/m<span class="elsevierStyleSup">2</span>). According to whether they were diagnosed with diabetes at the end of follow-up, they were divided into the diabetes group and non-diabetes group. The anthropometric and biochemical characteristics of the patients are shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>. It can be seen that in this study, new-onset diabetes patients were more likely to be male, older, taller and heavier, with higher BMI, SBP, DBP, and were more likely to smoke, drink alcohol, and have a family history of diabetes. In terms of hematological indicators, they had higher levels of Cholesterol, Triglyceride, LDL, ALT, AST, BUN, CCR, MAP, ePWV, and lower levels of HDL-c (as shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Multivariable logistic regression analysis of risk factors for DM</span><p id="par0045" class="elsevierStylePara elsevierViewall">To investigate the correlation between various indicators and the incidence of new-onset diabetes, multivariable logistic regression was performed with DM occurrence as the dependent variable and various relevant indicators as independent variables. The results showed that BMI, Triglyceride, ALT, BUN, CCR, ePWV, and a family history of diabetes were high-risk factors for new-onset diabetes (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>). The OR (95%CI) for BMI was 1.132 (1.087−1.178), and the OR (95%CI) for ePWV was 1.573 (1.464–1.689).</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">ROC curve analysis</span><p id="par0050" class="elsevierStylePara elsevierViewall">As shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>, the ability of ePWV, BMI, and their combination to predict new-onset diabetes is shown in the graph. ROC curves were calculated to demonstrate the ability of ePWV, BMI, and the combination of both factors to distinguish DM from non-DM. The AUC was calculated to evaluate the discriminatory performance of each biomarker for DM. Pairwise comparisons of ROC curves using the DeLong method indicated that neither the ePWV model (AUC: 0.789; 95% CI: 0.783−0.795; P < 0.001) nor the BMI model (AUC: 0.740; 95% CI: 0.733−0.747; P < 0.001) performed as well as the combined ePWV and BMI model (AUC: 0.822; 95% CI: 0.817−0.828; P < 0.001).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Discussion</span><p id="par0055" class="elsevierStylePara elsevierViewall">In this study, we investigated whether the combination of ePWV and BMI has good predictive value for diabetes risk in a large sample cohort study of the Chinese population. After adjusting for confounding factors that may contribute to the risk of diabetes through multivariable logistic regression, we found a significant positive correlation between ePWV/BMI and new-onset diabetes (OR [95% CI] for BMI was 1.132 [1.087−1.178], and the OR [95% CI] for ePWV was 1.573 [1.464–1.689]). Moreover, by using ROC diagnostic tests, we found that the combined value of the two factors is higher than the value of either alone, indicating good diagnostic/predictive value.</p><p id="par0060" class="elsevierStylePara elsevierViewall">The incidence of diabetes and its complications, such as cardiovascular and renal disease, is increasing, which is a huge burden worldwide. Although the risk of diabetes-related mortality has decreased in recent years, the relative risk of adverse cardiovascular events in diabetic patients remains high.<a class="elsevierStyleCrossRefs" href="#bib0095"><span class="elsevierStyleSup">19,20</span></a> A meta-analysis showed that diabetes can increase the risk of various cardiovascular diseases by about two-fold, independent of other conventional risk factors.<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a> Therefore, it is still urgent to explore more effective methods for early screening and diagnosis of diabetes patients in order to help implement targeted and proactive prevention strategies.</p><p id="par0065" class="elsevierStylePara elsevierViewall">Increased arterial stiffness in diabetic patients is believed to be related to quantitative and qualitative changes in arterial wall elastic protein and collagen protein.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a> The results of related studies indicate that this change may be caused by factors other than short-term hyperglycemia and hyperinsulinemia, such as carbonyl and oxidative stress, chronic low-grade inflammation, and endothelial dysfunction, including long-term hyperglycemia and formation of advanced glycation end-products.<a class="elsevierStyleCrossRefs" href="#bib0115"><span class="elsevierStyleSup">23–26</span></a> Currently, a large body of research shows that diabetes can lead to an increase in arterial stiffness,<a class="elsevierStyleCrossRefs" href="#bib0135"><span class="elsevierStyleSup">27,28</span></a> and the latest research has found that there may be bidirectionality between them. After adjusting for potential confounding factors, for the third quartile of c-fPWV, the risk ratios of diabetes were 1.00 (reference), 1.83 (95% CI 0.88–3.8), and 3.24 (95% CI 1.51–6.97) (P for trend = 0.002).<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">29</span></a> Weber discussed the rationality of the bidirectional relationship between arterial stiffness and the development of diabetes, and received support from various studies.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> Eiji Kimoto found that diabetes had a significant impact on hcPWV, hbPWV, and faPWV through grouped comparisons of healthy individuals and diabetic patients. Type 2 diabetes has different effects on central and peripheral arterial stiffness, and diabetes and age have a greater impact on carotid-femoral PWV and heart-groin PWV than on brachial-ankle and heart-arm PWV.<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">26</span></a> Although these studies used different indicators of arterial stiffness, such as central arterial pressure index, peripheral arterial pressure, and augmentation index, they came to similar conclusions that increased arterial stiffness is associated with a higher risk of developing diabetes. We also found similar results using non-invasive ePWV as a reliable indicator to evaluate arterial stiffness.</p><p id="par0070" class="elsevierStylePara elsevierViewall">BMI can reflect the accumulation of body fat and is closely related to the risk of developing diabetes, which is a recognized risk factor for glycemic dysregulation. In a study by Graham et al., which followed 114,824 women for 14 years and adjusted for age, BMI was the primary predictor of diabetes risk, and the risk increased with increasing BMI, even among women of average weight (body mass index, 24.0 kg/m<span class="elsevierStyleSup">2</span>).<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">31</span></a> Another study of middle-aged and elderly Americans demonstrated that weight gain in later life (after age 50 or 65) was an important risk factor for diabetes in older adults. Although the risk associated with obesity appears to decrease with age, among participants aged 75 and older, the highest BMI individuals still have twice the risk of developing diabetes compared to those with the lowest BMI.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">32</span></a> A study from Japan also indicated that long-term increases in BMI during adulthood are important predictors of diabetes development, independent of the achieved weight status, and even weight gain within the normal weight range may increase the risk of developing diabetes.<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">33</span></a> Similarly, our study also found a significant correlation between BMI and diabetes risk.</p><p id="par0075" class="elsevierStylePara elsevierViewall">The ePWV and BMI indicators can respectively reflect the health status of the cardiovascular system and the accumulation of body fat, and their combined use can more comprehensively evaluate the risk of developing diabetes in individuals. Furthermore, the combination of these two biomarkers has a higher predictive value for newly diagnosed DM than the use of either one alone. Therefore, we recommend the combined use of ePWV and BMI indicators for diabetes risk assessment in clinical practice to improve prediction accuracy. This is important for identifying high-risk individuals for diabetes at an early stage and optimizing treatment strategies.</p><p id="par0080" class="elsevierStylePara elsevierViewall">However, there are several limitations that should be considered in our study. (1) The present study did not classify the type of diabetes. However, as type 2 diabetes accounts for approximately 95% of all cases of diabetes, the results of our study may more accurately represent type 2 diabetes. (2) The diagnosis of diabetes in this study relied on self-report during follow-up or FPG > 7.0 mmol/L, which may lead to an underestimation of the true prevalence of diabetes.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Conclusion</span><p id="par0085" class="elsevierStylePara elsevierViewall">In conclusion, we found that elevated ePWV and BMI levels are independent risk factors for newly diagnosed diabetes. The combination of ePWV and BMI can better predict the onset of diabetes compared to either one alone. This study provides simple and practical reference indicators for clinical doctors to predict, identify, and screen high-risk patients for diabetes, and make correct clinical decisions to plan and initiate the most appropriate disease management in a timely manner.</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0145">Ethical approval</span><p id="par0100" class="elsevierStylePara elsevierViewall">Due to the anonymity of the data, research ethics have already been approved in previous studies. Therefore, there is no need to reapply these data for this study.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0150">Consent to participate</span><p id="par0105" class="elsevierStylePara elsevierViewall">The data can be downloaded from the Nhanes database (<a href="http://www.cdc.gov/nchs/nhanes/">www.cdc.gov/nchs/nhanes/</a>). Informed consent was obtained from all individual participants included in the study.</p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0155">Consent to publish</span><p id="par0110" class="elsevierStylePara elsevierViewall">The data can be downloaded from the Nhanes database (<a href="http://www.cdc.gov/nchs/nhanes/">www.cdc.gov/nchs/nhanes/</a>) and patients signed an informed consent regarding publishing their data.</p></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Funding</span><p id="par0090" class="elsevierStylePara elsevierViewall">This research did not receive any resources, monetary or in kind, from public or private finance centres nor from not-for-profit organisations.</p></span><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Conflict of interest</span><p id="par0095" class="elsevierStylePara elsevierViewall">None of the authors have any conflict of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:17 [ 0 => array:3 [ "identificador" => "xres2260541" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Purpose" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusion" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1886237" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xpalclavsec1886239" "titulo" => "Abbreviations" ] 3 => array:3 [ "identificador" => "xres2260540" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusión" ] ] ] 4 => array:2 [ "identificador" => "xpalclavsec1886238" "titulo" => "Palabras clave" ] 5 => array:2 [ "identificador" => "sec0005" "titulo" => "Background" ] 6 => array:3 [ "identificador" => "sec0010" "titulo" => "Methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Study design and data source" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Data collection" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Definition and calculation" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Calculation of indicators" ] 4 => array:2 [ "identificador" => "sec0035" "titulo" => "Statistical analysis" ] ] ] 7 => array:3 [ "identificador" => "sec0040" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0045" "titulo" => "Anthropometric and biochemical characteristics" ] 1 => array:2 [ "identificador" => "sec0050" "titulo" => "Multivariable logistic regression analysis of risk factors for DM" ] 2 => array:2 [ "identificador" => "sec0055" "titulo" => "ROC curve analysis" ] ] ] 8 => array:2 [ "identificador" => "sec0060" "titulo" => "Discussion" ] 9 => array:2 [ "identificador" => "sec0065" "titulo" => "Conclusion" ] 10 => array:2 [ "identificador" => "sec0080" "titulo" => "Ethical approval" ] 11 => array:2 [ "identificador" => "sec0085" "titulo" => "Consent to participate" ] 12 => array:2 [ "identificador" => "sec0090" "titulo" => "Consent to publish" ] 13 => array:2 [ "identificador" => "sec0070" "titulo" => "Funding" ] 14 => array:2 [ "identificador" => "sec0075" "titulo" => "Conflict of interest" ] 15 => array:2 [ "identificador" => "xack778783" "titulo" => "Acknowledgments" ] 16 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "PalabrasClave" => array:2 [ "en" => array:2 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1886237" "palabras" => array:5 [ 0 => "ePWV" 1 => "BMI" 2 => "Diabetes" 3 => "Risk factors" 4 => "Arterial stiffness" ] ] 1 => array:4 [ "clase" => "abr" "titulo" => "Abbreviations" "identificador" => "xpalclavsec1886239" "palabras" => array:15 [ 0 => "ePWV" 1 => "PWV" 2 => "cfPWV" 3 => "BMI" 4 => "SBP" 5 => "DBP" 6 => "FPG" 7 => "TC" 8 => "TG" 9 => "HDL" 10 => "LDL" 11 => "ALT" 12 => "AST" 13 => "BUN" 14 => "CCR" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1886238" "palabras" => array:5 [ 0 => "ePWV" 1 => "IMC" 2 => "Diabetes" 3 => "Factores de riesgo" 4 => "Rigidez arterial" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Purpose</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Estimated pulse wave velocity (ePWV) and body mass index (BMI) are significant predictors of new-onset diabetes. This study aims to evaluate the impact and predictive value of combining ePWV and BMI on the incidence of new-onset diabetes.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">A secondary analysis was conducted on a cohort study by Rich Healthcare (China), involving 211,833 eligible participants. Logistic regression analysis identified factors influencing diabetes occurrence, while ROC curve analysis assessed the predictive value of ePWV, BMI, and their combination for new-onset diabetes.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Over a mean follow-up period of 3.12 years, 3,000 men (1.41%) and 1,174 women (0.55%) were diagnosed with diabetes. Logistic regression revealed that BMI, triglycerides, alanine aminotransferase, blood urea nitrogen, creatinine clearance rate, ePWV, and family history of diabetes are high-risk factors for new-onset diabetes. The combination of ePWV and BMI provided a higher area under the ROC curve (0.822) compared to ePWV or BMI alone.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusion</span><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Elevated levels of ePWV and BMI are independent risk factors for new-onset diabetes. Combining these measures enhances predictive accuracy compared to using either indicator alone.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Purpose" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusion" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Objetivo</span><p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">ePWV y el IMC están estrechamente relacionados con la predicción de diabetes <span class="elsevierStyleItalic">de novo</span>. El objetivo de este estudio fue evaluar el impacto y valor predictivo de la velocidad estimada de la onda de pulso (ePWV) y el índice de masa corporal (IMC) en pacientes diabéticos <span class="elsevierStyleItalic">de novo</span>.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Se realizó un análisis secundario de un estudio de cohorte realizado por Rich Healthcare (China) con un total de 211833 sujetos elegibles inscritos. Se utilizó el análisis de regresión logística para identificar los factores que influyen en la aparición de diabetes, y el análisis de la curva ROC para evaluar el valor predictivo de ePWV, IMC y su combinación en la diabetes <span class="elsevierStyleItalic">de novo</span>.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">En un seguimiento medio de 3,12 años, se diagnosticó diabetes en 3000 hombres (1,41%) y 1174 mujeres (0,55%). El análisis de regresión logística mostró que el IMC, los triglicéridos, la alanina aminotransferasa, el nitrógeno uresanguíneo, la tasa de depuración de creatinina, el ePWV y los antecedentes de diabetes en la familia son factores de alto riesgo para la diabetes <span class="elsevierStyleItalic">de novo</span>. En comparación con el uso de ePWV o IMC de forma independiente, a combinación de ePWV e IMC proporcionó un área bajo la curva ROC más alta (0,822) en comparación con ePWV o IMC de forma independiente.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusión</span><p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">La elevación de los niveles de ePWV y IMC es un factor de riesgo independiente para la diabetes <span class="elsevierStyleItalic">de novo</span>, y la combinación de ePWV y IMC puede predecir mejor el inicio de la diabetes en comparación con el uso de ambos indicadores de forma independiente.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusión" ] ] ] ] "multimedia" => array:3 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1479 "Ancho" => 2091 "Tamanyo" => 159000 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">ROC curve of diabetes predicted by BMI, ePWV and combined index. The receiver operating characteristic curve of BMI combined with ePWV was 0.822, which was higher than BMI or ePWV alone.</p> <p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: ROC, receiver operating characteristic; AUC, area under the ROC curve; BMI, Body mass index; ePWV, estimated pulse wave velocity.</p>" ] ] 1 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: BMI, Body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-c, high-density lipid cholesterol; LDL, low-density lipid cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CCR, creatinine clearance; ePWV, estimated pulse wave velocity.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Overall \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">No-diabetes \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Diabetes \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">p \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">N \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">211833 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">207659 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4174 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Age \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">42.10 (12.65) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">41.84 (12.51) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">54.73 (13.16) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Female (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95710 (45.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">94536 (45.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1174 (28.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Height (cm) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">166.43 (8.33) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">166.42 (8.32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">166.87 (8.45) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Weight (kg) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">64.68 (12.22) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">64.51 (12.14) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">73.23 (13.14) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BMI (kg/m<span class="elsevierStyleSup">2</span>) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.24 (3.34) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.18 (3.31) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26.17 (3.48) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SBP (mmHg) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">119.06 (16.38) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">118.81 (16.23) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">131.56(18.74) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DBP (mmHg) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">74.18 (10.81) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">74.05 (10.75) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">80.67 (11.86) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cholesterol (mmol/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.71 (0.90) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.70 (0.90) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.05 (0.95) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Triglyceride (mmol/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.34 (1.03) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.32 (1.01) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.09 (1.50) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HDL-c (mmol/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.37 (0.31) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.37 (0.31) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.29 (0.34) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LDL (mmol/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.77 (0.68) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.77 (0.68) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.90 (0.70) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ALT (U/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.95 (22.13) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.73 (21.90) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35.28 (29.18) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AST (U/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">24.08 (12.36) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23.98 (12.30) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">29.11 (14.17) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BUN (mmol/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.66 (1.19) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.65 (1.18) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.01 (1.28) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCR (umol/L) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">70.07 (15.80) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">70.01 (15.80) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">72.73 (15.82) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Smoking.status (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Current smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">12075 (5.7) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">11660 (5.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">415 (9.9) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ever smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2559 (1.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2483 (1.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">76 (1.8) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Never smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45596 (21.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">44915 (21.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">681 (16.3) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Drinking status(%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Current drinker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1351 (0.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1302 (0.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">49 (1.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ever drinker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8956 (4.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8769 (4.2) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">187 (4.5) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Never drinker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">49923 (23.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">48987 (23.6) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">936 (22.4) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DM family histroy (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4344 (2.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4173 (2.0) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">171 (4.1) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MAP \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">92.13 (12.03) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">91.95 (11.94) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">101.03 (13.06) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ePWV (m/s) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.47 (1.72) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.43 (1.69) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9.36 (2.08) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3676037.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Baseline characteristics of the study population.</p>" ] ] 2 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: BMI, Body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-c, high-density lipid cholesterol; LDL, low-density lipid cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CCR, creatinine clearance; ePWV, estimated pulse wave velocity.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_colgroup " colspan="3" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Univariable</th><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_colgroup " colspan="3" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Multivariable</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Variables \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">OR \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CI (95%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">p \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">OR \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">CI (95%) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">p \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Sex \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,468 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.437−0.501 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,652 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.415−1.015 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,06 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BMI \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,248 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.238–1.258 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,132 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.087−1.178 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cholesterol \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,458 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.415–1.502 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,195 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.869−1.629 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,268 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Triglyceride \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,361 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.339−1.383 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.031−1.257 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,01 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HDL-c \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,392 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.343−0.447 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,822 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.491−1.343 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,453 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LDL \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,312 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.245−1.381 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,788 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.546−1.144 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,206 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ALT \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.009–1.010 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,01 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.001–1.019 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,023 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AST \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,012 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.010−1.014 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,994 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.974−1.012 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,526 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BUN \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,253 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.224−1.284 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.078−1.334 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CCR \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,008 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.006−1.010 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,978 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.966−0.989 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead colgroup " colspan="7" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Current smoker</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ever smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,86 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.666−1.095 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,234 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,227 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.710–2.026 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,442 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Never smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,426 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.377–0.482 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,601 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.442−0.817 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead colgroup " colspan="7" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Current drinker</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ever drinker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,567 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.415–0.788 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,828 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.468−1.542 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,533 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Never drinker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,508 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.383−0.689 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,881 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.522–1.584 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0,653 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DM family history \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2,083 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.776−2.427 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2,604 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.697−3.873 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ePWV \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,48 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.462−1.497 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1,573 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.464–1.689 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3676038.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Logistic regression analysis for univariate and multivariate analysis.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:33 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diagnosis and classification of diabetes mellitus: new criteria" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Mayfield" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Am Fam Physician" "fecha" => "1998" "volumen" => "58" "numero" => "6" "paginaInicial" => "1355" "paginaFinal" => "1362" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9803200" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epidemiology of obesity and diabetes and their cardiovascular complications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "S.N. Bhupathiraju" 1 => "F.B. Hu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCRESAHA.115.306825" "Revista" => array:7 [ "tituloSerie" => "Circ Res" "fecha" => "2016" "volumen" => "118" "numero" => "11" "paginaInicial" => "1723" "paginaFinal" => "1735" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27230638" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Metabolomics in diabetes and diabetic complications: insights from epidemiological studies" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Q. Jin" 1 => "R. Ma" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Cells" "fecha" => "2021" "volumen" => "10" "numero" => "11" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global aetiology and epidemiology of type 2 diabetes mellitus and its complications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Y. Zheng" 1 => "S.H. Ley" 2 => "F.B. Hu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrendo.2017.151" "Revista" => array:7 [ "tituloSerie" => "Nat Rev Endocrinol" "fecha" => "2018" "volumen" => "14" "numero" => "2" "paginaInicial" => "88" "paginaFinal" => "98" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29219149" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Coming full circle in diabetes mellitus: from complications to initiation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "B.E. Harcourt" 1 => "S.A. Penfold" 2 => "J.M. Forbes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrendo.2012.236" "Revista" => array:7 [ "tituloSerie" => "Nat Rev Endocrinol" "fecha" => "2013" "volumen" => "9" "numero" => "2" "paginaInicial" => "113" "paginaFinal" => "123" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23296171" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Why does obesity cause diabetes?" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "S. Klein" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cmet.2021.12.012" "Revista" => array:7 [ "tituloSerie" => "Cell Metab" "fecha" => "2022" "volumen" => "34" "numero" => "1" "paginaInicial" => "11" "paginaFinal" => "20" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34986330" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diabetes: environmental influence on diabetes prevalence" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "L. Koch" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrendo.2010.145" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Endocrinol" "fecha" => "2010" "volumen" => "6" "numero" => "10" "paginaInicial" => "536" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21080552" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association between BMI measured within a year after diagnosis of type 2 diabetes and mortality" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Logue" 1 => "J.J. Walker" 2 => "G. Leese" 3 => "R. Lindsay" 4 => "J. McKnight" 5 => "A. Morris" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Diabetes Care" "fecha" => "2013" "volumen" => "36" "numero" => "4" "paginaInicial" => "887" "paginaFinal" => "893" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Arterial stiffness preceding diabetes: a longitudinal study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "M. Zheng" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCRESAHA.120.317950" "Revista" => array:8 [ "tituloSerie" => "Circ Res" "fecha" => "2020" "volumen" => "127" "numero" => "12" "paginaInicial" => "1491" "paginaFinal" => "1498" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32985370" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S1056872714001196" "estado" => "S300" "issn" => "10568727" ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association between estimated pulse wave velocity and the risk of stroke in middle-aged men" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "S.Y. Jae" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/1747493020963762" "Revista" => array:8 [ "tituloSerie" => "Int J Stroke" "fecha" => "2021" "volumen" => "16" "numero" => "5" "paginaInicial" => "551" "paginaFinal" => "555" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33045935" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0193953X10000481" "estado" => "S300" "issn" => "0193953X" ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Does estimated pulse wave velocity add prognostic information?: MORGAM prospective cohort project" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "J. Vishram-Nielsen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/HYPERTENSIONAHA.119.14088" "Revista" => array:7 [ "tituloSerie" => "Hypertension" "fecha" => "2020" "volumen" => "75" "numero" => "6" "paginaInicial" => "1420" "paginaFinal" => "1428" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32275189" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Does an increase in estimated pulse wave velocity increase the incidence of hypertension?" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "H. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/HJH.0000000000002945" "Revista" => array:7 [ "tituloSerie" => "J Hypertens" "fecha" => "2021" "volumen" => "39" "numero" => "12" "paginaInicial" => "2388" "paginaFinal" => "2394" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34261958" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Does an increase in estimated pulse wave velocity increase the incidence of hypertension?" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "H. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/HJH.0000000000002945" "Revista" => array:7 [ "tituloSerie" => "J Hypertens" "fecha" => "2021" "volumen" => "39" "numero" => "12" "paginaInicial" => "2388" "paginaFinal" => "2394" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34261958" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predictive value of estimated pulse wave velocity for cardiovascular and all-cause mortality in individuals with obesity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "D. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13098-023-01011-2" "Revista" => array:7 [ "tituloSerie" => "Diabetol Metab Syndr" "fecha" => "2023" "volumen" => "15" "numero" => "1" "paginaInicial" => "40" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/36894988" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0168822708001472" "estado" => "S300" "issn" => "01688227" ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association of body mass index and age with incident diabetes in Chinese adults: a population-based cohort study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Chen" 1 => "X. Zhang" 2 => "J. Yuan" 3 => "B. Cai" 4 => "X. Wang" 5 => "X. Wu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "BMJ OPEN" "fecha" => "2018" "volumen" => "8" "numero" => "9" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diagnosis of diabetes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "S.E. Inzucchi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJMc1213510" "Revista" => array:6 [ "tituloSerie" => "N Engl J Med" "fecha" => "2013" "volumen" => "368" "numero" => "2" "paginaInicial" => "193" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23301753" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’" ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Eur Heart J." "fecha" => "2010" "volumen" => "31" "numero" => "19" "paginaInicial" => "2338" "paginaFinal" => "2350" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "S.V. Greve" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/HJH.0000000000000935" "Revista" => array:7 [ "tituloSerie" => "J Hypertens" "fecha" => "2016" "volumen" => "34" "numero" => "7" "paginaInicial" => "1279" "paginaFinal" => "1289" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27088638" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "(2) Classification and diagnosis of diabetes" ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2337/dcs15-2003" "Revista" => array:6 [ "tituloSerie" => "Diabetes Care" "fecha" => "2015" "volumen" => "38" "paginaInicial" => "S8" "paginaFinal" => "S16" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26405073" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diabetic kidney disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "M.C. Thomas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Nat Rev Dis Primers" "fecha" => "2015" "volumen" => "1" "paginaInicial" => "15018" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "N. Sarwar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(10)60484-9" "Revista" => array:7 [ "tituloSerie" => "Lancet" "fecha" => "2010" "volumen" => "375" "numero" => "9733" "paginaInicial" => "2215" "paginaFinal" => "2222" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20609967" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Protein glycation, diabetes, and aging" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P. Ulrich" 1 => "A. Cerami" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Recent Prog Horm Res" "fecha" => "2001" "volumen" => "56" "paginaInicial" => "1" "paginaFinal" => "21" ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prevention Conference VI: Diabetes and Cardiovascular Disease: Writing Group II: pathogenesis of atherosclerosis in diabetes" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "R.H. Eckel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/01.cir.0000013954.65303.c5" "Revista" => array:7 [ "tituloSerie" => "Circulation" "fecha" => "2002" "volumen" => "105" "numero" => "18" "paginaInicial" => "e138" "paginaFinal" => "43" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11994264" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "R.M. Henry" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/01.CIR.0000065222.34933.FC" "Revista" => array:7 [ "tituloSerie" => "Circulation" "fecha" => "2003" "volumen" => "107" "numero" => "16" "paginaInicial" => "2089" "paginaFinal" => "2095" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12695300" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diabetes: progress in reducing vascular complications of diabetes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G.L. Booth" 1 => "B. Zinman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Nat Rev Endocrinol" "fecha" => "2014" "volumen" => "10" "numero" => "8" "paginaInicial" => "451" "paginaFinal" => "453" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Novel inflammatory markers for incident pre-diabetes and type 2 diabetes: the Rotterdam Study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "A. Brahimaj" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10654-017-0236-0" "Revista" => array:7 [ "tituloSerie" => "Eur J Epidemiol" "fecha" => "2017" "volumen" => "32" "numero" => "3" "paginaInicial" => "217" "paginaFinal" => "226" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28258520" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Preferential stiffening of central over peripheral arteries in type 2 diabetes" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "E. Kimoto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2337/diabetes.52.2.448" "Revista" => array:7 [ "tituloSerie" => "Diabetes" "fecha" => "2003" "volumen" => "52" "numero" => "2" "paginaInicial" => "448" "paginaFinal" => "452" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12540620" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C.D. Stehouwer" 1 => "R.M. Henry" 2 => "I. Ferreira" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00125-007-0918-3" "Revista" => array:7 [ "tituloSerie" => "Diabetologia" "fecha" => "2008" "volumen" => "51" "numero" => "4" "paginaInicial" => "527" "paginaFinal" => "539" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18239908" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Arterial stiffness and incidence of diabetes: a population-based cohort study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "I.F. Muhammad" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2337/dc17-1071" "Revista" => array:7 [ "tituloSerie" => "Diabetes Care" "fecha" => "2017" "volumen" => "40" "numero" => "12" "paginaInicial" => "1739" "paginaFinal" => "1745" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28971963" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Arterial stiffness, wave reflections, and diabetes: a bidirectional relationship?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T. Weber" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ajh.2010.163" "Revista" => array:7 [ "tituloSerie" => "Am J Hypertens" "fecha" => "2010" "volumen" => "23" "numero" => "10" "paginaInicial" => "1047" "paginaFinal" => "1048" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20852596" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Weight gain as a risk factor for clinical diabetes mellitus in women" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "G.A. Colditz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.7326/0003-4819-122-7-199504010-00001" "Revista" => array:7 [ "tituloSerie" => "Ann Intern Med" "fecha" => "1995" "volumen" => "122" "numero" => "7" "paginaInicial" => "481" "paginaFinal" => "486" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7872581" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association between adiposity in midlife and older age and risk of diabetes in older adults" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "M.L. Biggs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/jama.2010.843" "Revista" => array:7 [ "tituloSerie" => "JAMA" "fecha" => "2010" "volumen" => "303" "numero" => "24" "paginaInicial" => "2504" "paginaFinal" => "2512" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20571017" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long-term weight change in adulthood and incident diabetes mellitus: MY Health Up Study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:1 [ 0 => "C. Kaneto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.diabres.2013.08.011" "Revista" => array:7 [ "tituloSerie" => "Diabetes Res Clin Pract" "fecha" => "2013" "volumen" => "102" "numero" => "2" "paginaInicial" => "138" "paginaFinal" => "146" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24139847" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack778783" "titulo" => "Acknowledgments" "texto" => "<p id="par0115" class="elsevierStylePara elsevierViewall">We thank those who contributed to the National Health and Nutrition Examination Survey data, including all the anonymous participants in this study.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/22548874/0000022400000008/v1_202410020653/S2254887424000912/v1_202410020653/en/main.assets" "Apartado" => array:4 [ "identificador" => "1901" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/22548874/0000022400000008/v1_202410020653/S2254887424000912/v1_202410020653/en/main.pdf?idApp=WRCEE&text.app=https://revclinesp.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887424000912?idApp=WRCEE" ]