was read the article
array:23 [ "pii" => "S2254887423000735" "issn" => "22548874" "doi" => "10.1016/j.rceng.2023.06.003" "estado" => "S300" "fechaPublicacion" => "2023-08-01" "aid" => "2119" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "copyrightAnyo" => "2023" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "cor" "cita" => "Rev Clin Esp. 2023;223:456-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0014256523001157" "issn" => "00142565" "doi" => "10.1016/j.rce.2023.04.006" "estado" => "S300" "fechaPublicacion" => "2023-08-01" "aid" => "2119" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "cor" "cita" => "Rev Clin Esp. 2023;223:456-9" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Correspondencia</span>" "titulo" => "Inteligencia artificial para predecir recurrencia en pacientes con enfermedad tromboembólica venosa: hacia una nueva era" "tienePdf" => "es" "tieneTextoCompleto" => "es" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "456" "paginaFinal" => "459" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Artificial intelligence for recurrence in patients with venous thromboembolism: towards a new era" ] ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A. Franco-Moreno, N. Muñoz-Rivas, J.M. Ruiz-Giardín, C. de Ancos-Aracil" "autores" => array:4 [ 0 => array:2 [ "nombre" => "A." "apellidos" => "Franco-Moreno" ] 1 => array:2 [ "nombre" => "N." "apellidos" => "Muñoz-Rivas" ] 2 => array:2 [ "nombre" => "J.M." "apellidos" => "Ruiz-Giardín" ] 3 => array:2 [ "nombre" => "C." "apellidos" => "de Ancos-Aracil" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2254887423000735" "doi" => "10.1016/j.rceng.2023.06.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887423000735?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0014256523001157?idApp=WRCEE" "url" => "/00142565/0000022300000007/v5_202312180715/S0014256523001157/v5_202312180715/es/main.assets" ] ] "itemAnterior" => array:19 [ "pii" => "S2254887423000723" "issn" => "22548874" "doi" => "10.1016/j.rceng.2023.06.002" "estado" => "S300" "fechaPublicacion" => "2023-08-01" "aid" => "2120" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Rev Clin Esp. 2023;223:450-5" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Brief Original</span>" "titulo" => "Chest pain secondary to drug use treated in hospital emergency departments in Spain" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "450" "paginaFinal" => "455" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Dolor torácico secundario al consumo de drogas atendidos en urgencias hospitalarias en España" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2046 "Ancho" => 3341 "Tamanyo" => 196853 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0050" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Multivariate analysis of the association of each drug with the presence of chest pain adjusted for age and sex (OR and 95% CI).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "D. Ibrahim-Achi, S. Pelizzolo-Vega, J. Puiguriguer, A. Supervía, M. Galicia, A. Domínguez-Rodríguez, O. Miró, G. Burillo-Putze" "autores" => array:8 [ 0 => array:2 [ "nombre" => "D." "apellidos" => "Ibrahim-Achi" ] 1 => array:2 [ "nombre" => "S." "apellidos" => "Pelizzolo-Vega" ] 2 => array:2 [ "nombre" => "J." "apellidos" => "Puiguriguer" ] 3 => array:2 [ "nombre" => "A." "apellidos" => "Supervía" ] 4 => array:2 [ "nombre" => "M." "apellidos" => "Galicia" ] 5 => array:2 [ "nombre" => "A." "apellidos" => "Domínguez-Rodríguez" ] 6 => array:2 [ "nombre" => "O." "apellidos" => "Miró" ] 7 => array:2 [ "nombre" => "G." "apellidos" => "Burillo-Putze" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0014256523001145" "doi" => "10.1016/j.rce.2023.05.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0014256523001145?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887423000723?idApp=WRCEE" "url" => "/22548874/0000022300000007/v9_202312180741/S2254887423000723/v9_202312180741/en/main.assets" ] "en" => array:15 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Correspondence</span>" "titulo" => "Artificial intelligence for recurrence in patients with venous thromboembolism: towards a new era" "tieneTextoCompleto" => true "saludo" => "<span class="elsevierStyleItalic">Dear Director:</span>" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "456" "paginaFinal" => "459" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "A. Franco-Moreno, N. Muñoz-Rivas, J.-M. Ruiz-Giardín, C. de Ancos-Aracil" "autores" => array:4 [ 0 => array:4 [ "nombre" => "A." "apellidos" => "Franco-Moreno" "email" => array:1 [ 0 => "afranco278@hotmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "N." "apellidos" => "Muñoz-Rivas" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "J.-M." "apellidos" => "Ruiz-Giardín" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "C." "apellidos" => "de Ancos-Aracil" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Medicina Interna, Unidad de Enfermedad Tromboembólica Venosa, Hospital Universitario Infanta Leonor–Virgen de la Torre, Madrid, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Medicina Interna, Hospital Universitario de Fuenlabrada, Madrid, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Medicina Interna, Unidad de Enfermedad Tromboembólica Venosa, Hospital Universitario de Fuenlabrada, Madrid, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Inteligencia artificial para predecir recurrencia en pacientes con enfermedad tromboembólica venosa: hacia una nueva era" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">Patients who have experienced a first episode of venous thromboembolism (VTE) are at increased risk of developing a new event after discontinuing anticoagulation. The risk is higher in patients with permanent risk factors, compared to transient risk factors or in cases of unprovoked venous thromboembolism (VTE). On the other hand, in the long term, mortality from VTEs decreases and mortality from bleeding persists. Therefore, prediction of the long-term risk of recurrence of VTE is key to determining the duration of anticoagulant therapy.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Focusing on unprovoked VTE, several authors have attempted to define models to assess the risk of recurrence after discontinuing anticoagulation (Vienna,<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> DASH,<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> HER-DOO2<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> and DAMOVES<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a>). However, these scales have shown limited predictive capacity in their external validation.<a class="elsevierStyleCrossRefs" href="#bib0025"><span class="elsevierStyleSup">5–11</span></a> As a result, current VTE guidelines do not support the use of these models to decide whether to discontinue or continue anticoagulant therapy after a treatment period of at least three months.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Artificial intelligence is the simulation of human intelligence. It develops algorithms capable of performing tasks normally associated with human intelligence, such as learning, decision-making, and natural language processing. This requires enormous amounts of data coupled with a large computing capacity that supports deep learning processes. Recently, AI has been incorporated into medicine with the aim of accelerating processes and promoting precision in areas such as diagnosis, prediction or treatment of diseases through pattern recognition. These technological tools can help in decision-making under conditions of uncertainty and predict future data, contributing to the development of more personalised medicine with lower error rates. Furthermore, AI can provide valuable information to patients who are excluded from clinical trials because of their characteristics. However, its implementation is not easy. Machine learning scenarios applied to medicine are the embodiment of unprecedented efforts towards modernisation and coordination. Its implementation brings a number of technological and ethical challenges. At the top of the list are the amount of data, processing power and Machine Learning (ML) platforms. On a secondary level, we have data quality, representativeness and privacy of that data, algorithm transparency and explainability, human monitoring, and evidence generation through external validation.</p><p id="par0020" class="elsevierStylePara elsevierViewall">Within the AI techniques applied to the medical setting, there is an increasing interest in ML, the aim of which is to develop algorithms that allow computer systems to make decisions and learn from their outcomes. These models base their strength on prediction, by analysing the available information, without having to know what the mechanisms linking the variables to each other are. The ML trains an algorithm with input data that captures past observations, and builds a model to predict outcomes. The next step is validation. For the training-validation process, the data set is divided into standard percentages of 70% and 30%, respectively.</p><p id="par0025" class="elsevierStylePara elsevierViewall">Mathematical models could more accurately predict the risk of recurrence in patients with VTE. In this regard, we have proposed a literature review to determine the performance of AI algorithms for predicting relapse in patients with VTE as compared to multiple regression models (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>). Calazans et al.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> conducted a retrospective cohort study in which 240 patients with a deep vein thrombosis event were selected to investigate the performance of a neural network model. In the validation phase, the algorithm precisely classified the presence or absence of recurrence, with an output of 0.97. Martins et al.<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> published a study of patients with provoked and unprovoked VTE in which the performance of three neural network algorithms was assessed. For this, 39 preselected clinical and laboratory variables were analysed in 235 patients. The ability to distinguish recurrence in the validation cohort was excellent, with an area under the curve >0.90 for all three models. Another retrospective study used the ML technique in cancer patients with an episode of VTE treated with anticoagulants for a period of 6 months.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> The cumulative incidence of recurrent VTE ranged from 2.7% to 3.9% after cessation of anticoagulation. The ability of the Random Forest model to distinguish recurrence was good, calculating a C-statistic of 0.72. Finally, the study by Mora et al.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a> evaluated five AI algorithms in patients with acute pulmonary embolism requiring discontinuation of anticoagulant treatment before 90 days. A total of 1348 patients from the Computerised Registry of Thromboembolism (RIETE) were enrolled over a period of 18 years. There were 69 recurrences. The discriminative capacity of the algorithms was high, with Neural Network being the most accurate.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0030" class="elsevierStylePara elsevierViewall">In conclusion, AI models adequately discriminated patients at risk of recurrence of VTE. However, these results require external validation. There is a need to potentiate the training of doctors in advanced data analysis, as well as to encourage collaboration with experts in intelligent information technologies.</p><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0005">Conflicts of interest</span><p id="par0035" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0005" "titulo" => "Conflicts of interest" ] 1 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2023-03-20" "multimedia" => array:1 [ 0 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0080" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">AUC: area under the curve; PE: pulmonary embolism; NR: not reported; VTE: venous thromboembolism; DVT: deep venous tromboembolism.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Author, year \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Type of study \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Implementation \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Number of patients \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Study period \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Model \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Validation \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Results \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Marcucci et al., 2015<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">904 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From 1992 to 2008 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Viena prediction model \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.62 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tritschler et al, 2015<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">156 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From Sept. 2009 to Dec. 2013 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Viena prediction model \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.39 y 0.43 at 12 months and 24 months, respectively. \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Timp et al., 2019<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.750 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From Mar. 1999 to Aug. 2004 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Viena prediction model \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.62 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Marin-Romero et al., 2019<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Retrospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">195 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From 2006 to 2014 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Viena prediction model \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.63 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Rodger et al., 2017<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.785 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From Nov. 2008 to Feb. 2015 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HER-DOO2 rule \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cumulative incidence of recurrent VTE of 3.0% and 8.1% in low-risk women and high-risk women and men, respectively \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tosetto et al, 2017<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Retrospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">827 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From Jan. 2007 to Sept. 2016 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Score DASH \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.65 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Timp et al., 2019<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Prospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.750 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From Mar. 1999 to Aug. 2004 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Score DASH \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.66 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Marin-Romero et al., 2019<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Retrospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">195 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From 2006 to 2014 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Score DASH \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.63 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Franco et al.,2017<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Retrospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with unprovoked VTE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">121 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From Aug. 2012 to Oct. 2015 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DAMOVES \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">External \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.83 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Calazans et al., 2016<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Retrospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with DVT \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">240 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NR \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Neural Network \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Internal \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Output</span> 0.97 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="3" align="left" valign="middle">Martins et al., 2020<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a></td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="3" align="center" valign="middle">Retrospective</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="3" align="left" valign="middle">Patients with provoked and unprovoked VTE</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="3" align="center" valign="middle">235</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="3" align="left" valign="middle">From Jan. 2009 to Aug. 2016</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Neural Network 1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="3" align="center" valign="middle">Internal</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.96 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Neural Network 2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.93 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Neural Network 3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.98 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Muñoz et al., 2022<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Retrospective \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Patients with active cancer and one episode of VTE treated with anticoagulants for 6 months \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21.227 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">From 2014 to 2018 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Random Forest \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Internal \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AUC 0.72 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="10" align="left" valign="middle">Mora et al., 2022<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a></td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="10" align="left" valign="middle">Retrospective</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="10" align="left" valign="middle">Patients with PE that interrupted anticoagulation before a 90-day period</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="10" align="center" valign="middle">1.348</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="10" align="left" valign="middle">From Mar. 2001 to Mar. 2018</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="2" align="left" valign="middle">Decision tree</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="10" align="center" valign="middle">Internal</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatal PE: AUC 0.80 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Non-fatal VTE: AUC 0.80 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="2" align="left" valign="middle">K-nearest neighbors</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatal PE: AUC 0.87 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Non-fatal VTE: AUC 0.87 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="2" align="left" valign="middle">Support vector machine</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatal PE: AUC 0.85 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Non-fatal VTE: AUC 0.85 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="2" align="left" valign="middle">Ensemble</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatal PE: AUC 0.90 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Non-fatal VTE: AUC 0.90 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="2" align="left" valign="middle">Neural Network</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fatal PE: AUC 0.96 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Non-fatal VTE: AUC 0.96 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3395615.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Performance of AI algorithms for predicting relapse in patients with VTE as compared to multiple regression models.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:15 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "S. Eichinger" 1 => "G. Heinze" 2 => "L.M. Jandeck" 3 => "P.A. Kyrle" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCULATIONAHA.109.925214" "Revista" => array:7 [ "tituloSerie" => "Circulation" "fecha" => "2010" "volumen" => "121" "numero" => "14" "paginaInicial" => "1630" "paginaFinal" => "1636" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20351233" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Tosetto" 1 => "A. Iorio" 2 => "M. Marcucci" 3 => "T. Baglin" 4 => "M. Cushman" 5 => "S. Eichinger" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1538-7836.2012.04735.x" "Revista" => array:7 [ "tituloSerie" => "J Thromb Haemost" "fecha" => "2012" "volumen" => "10" "numero" => "6" "paginaInicial" => "1019" "paginaFinal" => "1025" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22489957" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.A. Rodger" 1 => "S.R. Kahn" 2 => "P.S. Wells" 3 => "D.A. Anderson" 4 => "I. Chagnon" 5 => "G. Le Gal" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1503/cmaj.080493" "Revista" => array:6 [ "tituloSerie" => "CMAJ" "fecha" => "2008" "volumen" => "179" "numero" => "5" "paginaInicial" => "417" "paginaFinal" => "426" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A risk score for prediction of recurrence in patients with unprovoked venous thromboembolism (DAMOVES)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A.I. Franco Moreno" 1 => "M.J. García Navarro" 2 => "J. Ortiz Sánchez" 3 => "R.M. Martín Díaz" 4 => "E. Madroñal Cerezo" 5 => "C.L. de Ancos Aracil" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ejim.2015.12.010" "Revista" => array:6 [ "tituloSerie" => "Eur J Intern Med" "fecha" => "2016" "volumen" => "29" "paginaInicial" => "59" "paginaFinal" => "64" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26775136" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Risk of recurrence after a first unprovoked venous thromboembolism: external validation of the Vienna Prediction Model with pooled individual patient data" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Marcucci" 1 => "A. Iorio" 2 => "J.D. Douketis" 3 => "S. Eichinger" 4 => "A. Tosetto" 5 => "T. Baglin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jth.12871" "Revista" => array:6 [ "tituloSerie" => "J Thromb Haemost" "fecha" => "2015" "volumen" => "13" "numero" => "5" "paginaInicial" => "775" "paginaFinal" => "781" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting recurrence after unprovoked venous thromboembolism: prospective validation of the updated Vienna Prediction Model" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "T. Tritschler" 1 => "M. Méan" 2 => "A. Limacher" 3 => "N. Rodondi" 4 => "D. Aujesky" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1182/blood-2015-04-641225" "Revista" => array:7 [ "tituloSerie" => "Blood" "fecha" => "2015" "volumen" => "126" "numero" => "16" "paginaInicial" => "1949" "paginaFinal" => "1951" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26341256" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Risk prediction of recurrent venous thrombosis; where are we now and what can we add?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.F. Timp" 1 => "W.M. Lijfering" 2 => "F.R. Rosendaal" 3 => "S. le Cessie" 4 => "S.C. Cannegieter" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jth.14535" "Revista" => array:7 [ "tituloSerie" => "J Thromb Haemost" "fecha" => "2019" "volumen" => "17" "numero" => "9" "paginaInicial" => "1527" "paginaFinal" => "1534" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31188515" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Risk of recurrence after withdrawal of anticoagulation in patients with unprovoked venous thromboembolism: external validation of the Vienna nomogram and the dash prediction score" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Marin-Romero" 1 => "T. Elías-Hernández" 2 => "M.I. Asensio-Cruz" 3 => "R. Ortega-Rivera" 4 => "R. Morillo-Guerrero" 5 => "J. Toral" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.arbres.2019.03.025" "Revista" => array:7 [ "tituloSerie" => "Arch Bronconeumol (Engl Ed)" "fecha" => "2019" "volumen" => "55" "numero" => "12" "paginaInicial" => "619" "paginaFinal" => "626" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31130245" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Validating the HERDOO2 rule to guide treatment duration for women with unprovoked venous thrombosis: multinational prospective cohort management study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.A. Rodger" 1 => "G. Le Gal" 2 => "D.R. Anderson" 3 => "J. Schmidt" 4 => "G. Pernod" 5 => "S.R. Kahn" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/bmj.j1065" "Revista" => array:5 [ "tituloSerie" => "BMJ" "fecha" => "2017" "volumen" => "356" "paginaInicial" => "j1065" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28314711" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "External validation of the DASH prediction rule: a retrospective cohort study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Tosetto" 1 => "S. Testa" 2 => "I. Martinelli" 3 => "D. Poli" 4 => "B. Cosmi" 5 => "C. Lodigiani" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jth.13781" "Revista" => array:7 [ "tituloSerie" => "J Thromb Haemost" "fecha" => "2017" "volumen" => "15" "numero" => "10" "paginaInicial" => "1963" "paginaFinal" => "1970" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28762665" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting recurrence after a first unprovoked venous thromboembolism: Retrospective validation of the DAMOVES score" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.I. Franco Moreno" 1 => "M.J. García Navarro" 2 => "J. Ortiz Sánchez" 3 => "J.M. Ruiz Giardín" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ejim.2017.03.022" "Revista" => array:6 [ "tituloSerie" => "Eur J Intern Med" "fecha" => "2017" "volumen" => "41" "paginaInicial" => "e15" "paginaFinal" => "e16" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28392191" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Artificial neural network for prediction of venous thrombosis recurrence" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Anna Virginia Calazans Romano" 1 => "Tiago Dias Martins" 2 => "Rubens Maciel" 3 => "Erich Vinicius De Paula" 4 => "Joyce Maria Annichino-Bizzacchi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1182/blood.V128.22.3771.3771" "Revista" => array:5 [ "tituloSerie" => "Blood" "fecha" => "2016" "volumen" => "128" "numero" => "22" "paginaInicial" => "3771" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Artificial neural networks for prediction of recurrent venous thromboembolism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T.D. Martins" 1 => "J.M. Annichino-Bizzacchi" 2 => "A.V.C. Romano" 3 => "R. Maciel Filho" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ijmedinf.2020.104221" "Revista" => array:3 [ "tituloSerie" => "Int J Med Inform" "fecha" => "2020" "volumen" => "141" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting recurrence of venous thromboembolism in anticoagulated cancer patients using real-world data and machine learning" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Andrés J. Muñoz Martín" 1 => "Sofía Huerga Domínguez" 2 => "Juan Carlos Souto" 3 => "Jacobo Rogado Revuelta" 4 => "Antonio Sanchez" 5 => "Andres Garcia-Palomo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1200/JCO.2022.40.16_suppl.e18742" "Revista" => array:5 [ "tituloSerie" => "J Clin Oncol" "fecha" => "2022" "volumen" => "40" "numero" => "16_suppl" "paginaInicial" => "e18742" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Machine learning to predict outcomes in patients with acute pulmonary embolism who prematurely discontinued anticoagulant therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D. Mora" 1 => "J.A. Nieto" 2 => "J. Mateo" 3 => "B. Bikdeli" 4 => "S. Barco" 5 => "J. Trujillo-Santos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1055/a-1525-7220" "Revista" => array:7 [ "tituloSerie" => "Thromb Haemost" "fecha" => "2022" "volumen" => "122" "numero" => "4" "paginaInicial" => "570" "paginaFinal" => "577" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34107539" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/22548874/0000022300000007/v9_202312180741/S2254887423000735/v9_202312180741/en/main.assets" "Apartado" => array:4 [ "identificador" => "71813" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Correspondence" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/22548874/0000022300000007/v9_202312180741/S2254887423000735/v9_202312180741/en/main.pdf?idApp=WRCEE&text.app=https://revclinesp.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887423000735?idApp=WRCEE" ]